Data Transformation
This comprehensive guide covers data transformation capabilities in UnDatasIO, including data cleaning, validation, and transformation operations. Learn how to prepare your data for analysis and ensure data quality.
Overview
Section titled “Overview”Data transformation is the process of converting, cleaning, and structuring your data to make it suitable for analysis, reporting, or integration with other systems. UnDatasIO provides a comprehensive set of tools for data transformation.
Data Cleaning
Section titled “Data Cleaning”Handling Missing Values
Section titled “Handling Missing Values”Missing values can significantly impact data quality and analysis results. UnDatasIO provides several strategies for handling missing data:
Remove Rows with Missing Values
Section titled “Remove Rows with Missing Values”// Remove rows where any column has missing valuesconst cleanedData = await client.cleanData(data, { missingValueStrategy: "remove",});
// Remove rows where specific columns have missing valuesconst cleanedData = await client.cleanData(data, { missingValueStrategy: "remove", columns: ["email", "phone"],});Fill Missing Values
Section titled “Fill Missing Values”// Fill missing values with default valuesconst filledData = await client.fillMissingValues(data, { strategies: [ { column: "age", strategy: "fill", value: 0, }, { column: "city", strategy: "fill", value: "Unknown", }, { column: "email", strategy: "fill", value: "no-email@example.com", }, ],});Interpolate Missing Values
Section titled “Interpolate Missing Values”// Use statistical methods to fill missing valuesconst interpolatedData = await client.interpolateMissingValues(data, { strategies: [ { column: "price", method: "mean", // or 'median', 'mode' }, { column: "date", method: "forward_fill", // or 'backward_fill' }, ],});Data Deduplication
Section titled “Data Deduplication”Remove duplicate records to ensure data integrity:
// Remove exact duplicatesconst uniqueData = await client.deduplicateData(data, { columns: ["email", "phone"], strategy: "keep_first",});
// Remove fuzzy duplicates (similar records)const fuzzyUniqueData = await client.deduplicateData(data, { columns: ["name", "email"], strategy: "fuzzy", similarity: 0.8, // 80% similarity threshold});Data Standardization
Section titled “Data Standardization”Standardize data formats for consistency:
// Standardize text dataconst standardizedData = await client.standardizeData(data, { operations: [ { column: "name", operation: "title_case", // Capitalize first letter of each word }, { column: "email", operation: "lowercase", }, { column: "phone", operation: "format", format: "(###) ###-####", }, ],});Data Validation
Section titled “Data Validation”Schema Validation
Section titled “Schema Validation”Validate data against predefined schemas:
// Define a schema for user dataconst userSchema = { type: "object", required: ["id", "name", "email"], properties: { id: { type: "integer", minimum: 1, }, name: { type: "string", minLength: 1, maxLength: 100, }, email: { type: "string", format: "email", }, age: { type: "integer", minimum: 0, maximum: 150, }, phone: { type: "string", pattern: "^\\+?[1-9]\\d{1,14}$", }, },};
// Validate data against schemaconst validationResult = await client.validateData(data, { schema: userSchema, strict: true,});
console.log("Validation errors:", validationResult.errors);console.log("Valid records:", validationResult.validCount);console.log("Invalid records:", validationResult.invalidCount);Custom Validation Rules
Section titled “Custom Validation Rules”Create custom validation rules for your specific needs:
// Custom validation functionsconst customValidations = [ { column: "email", rule: (value) => { return value.includes("@") && value.includes("."); }, message: "Email must contain @ and .", }, { column: "age", rule: (value) => { return value >= 18 && value <= 65; }, message: "Age must be between 18 and 65", }, { column: "salary", rule: (value) => { return value > 0 && value <= 1000000; }, message: "Salary must be positive and less than 1M", },];
const validatedData = await client.validateData(data, { customRules: customValidations,});Data Transformation Operations
Section titled “Data Transformation Operations”Column Operations
Section titled “Column Operations”Rename Columns
Section titled “Rename Columns”// Rename columns for better clarityconst renamedData = await client.renameColumns(data, { mappings: { fname: "first_name", lname: "last_name", ph: "phone", addr: "address", },});Split Columns
Section titled “Split Columns”// Split a full name column into first and last nameconst splitData = await client.splitColumn(data, { column: "full_name", delimiter: " ", newColumns: ["first_name", "last_name"],});
// Split address into componentsconst addressData = await client.splitColumn(data, { column: "address", delimiter: ",", newColumns: ["street", "city", "state", "zip"],});Combine Columns
Section titled “Combine Columns”// Combine first and last name into full nameconst combinedData = await client.combineColumns(data, { columns: ["first_name", "last_name"], newColumn: "full_name", separator: " ",});
// Create a formatted addressconst formattedData = await client.combineColumns(data, { columns: ["street", "city", "state", "zip"], newColumn: "formatted_address", separator: ", ", format: "{street}, {city}, {state} {zip}",});Data Type Conversions
Section titled “Data Type Conversions”Convert data types for proper analysis:
// Convert data typesconst convertedData = await client.convertDataTypes(data, { conversions: [ { column: "age", type: "integer", }, { column: "price", type: "decimal", precision: 2, }, { column: "date", type: "date", format: "YYYY-MM-DD", }, { column: "is_active", type: "boolean", trueValues: ["yes", "true", "1"], falseValues: ["no", "false", "0"], }, ],});Text Processing
Section titled “Text Processing”Case Conversion
Section titled “Case Conversion”// Convert text caseconst caseData = await client.transformText(data, { operations: [ { column: "name", operation: "uppercase", }, { column: "description", operation: "lowercase", }, { column: "title", operation: "title_case", }, ],});Text Cleaning
Section titled “Text Cleaning”// Clean text dataconst cleanedText = await client.cleanText(data, { operations: [ { column: "description", operations: ["trim", "remove_extra_spaces", "remove_special_chars"], }, { column: "comments", operations: ["remove_html_tags", "normalize_whitespace"], }, ],});Pattern Extraction
Section titled “Pattern Extraction”// Extract patterns using regexconst extractedData = await client.extractPatterns(data, { extractions: [ { column: "phone", pattern: "(\\d{3})-(\\d{3})-(\\d{4})", newColumns: ["area_code", "prefix", "line_number"], }, { column: "email", pattern: "([^@]+)@([^@]+)", newColumns: ["username", "domain"], }, ],});Advanced Transformations
Section titled “Advanced Transformations”Conditional Transformations
Section titled “Conditional Transformations”Apply transformations based on conditions:
// Conditional transformationsconst conditionalData = await client.applyConditionalTransformations(data, { rules: [ { condition: { column: "age", operator: "<", value: 18 }, transformations: [ { column: "category", value: "minor" }, { column: "can_vote", value: false }, ], }, { condition: { column: "salary", operator: ">", value: 100000 }, transformations: [{ column: "tax_bracket", value: "high" }], }, ],});Aggregation Operations
Section titled “Aggregation Operations”Summarize data with aggregation functions:
// Group and aggregate dataconst aggregatedData = await client.aggregateData(data, { groupBy: ["department", "location"], aggregations: [ { column: "salary", function: "average", alias: "avg_salary", }, { column: "salary", function: "sum", alias: "total_salary", }, { column: "id", function: "count", alias: "employee_count", }, { column: "salary", function: "min", alias: "min_salary", }, { column: "salary", function: "max", alias: "max_salary", }, ],});Pivot Tables
Section titled “Pivot Tables”Create pivot tables for data analysis:
// Create pivot tableconst pivotTable = await client.createPivotTable(data, { index: "department", columns: "location", values: "salary", aggfunc: "average", fillValue: 0,});Data Quality Assessment
Section titled “Data Quality Assessment”Quality Metrics
Section titled “Quality Metrics”Assess the quality of your data:
// Generate quality reportconst qualityReport = await client.assessDataQuality(data, { metrics: [ "completeness", "accuracy", "consistency", "timeliness", "validity", ],});
console.log("Data Quality Report:");console.log("Completeness:", qualityReport.completeness);console.log("Accuracy:", qualityReport.accuracy);console.log("Consistency:", qualityReport.consistency);console.log("Timeliness:", qualityReport.timeliness);console.log("Validity:", qualityReport.validity);Data Profiling
Section titled “Data Profiling”Generate detailed data profiles:
// Profile your dataconst profile = await client.profileData(data, { include: ["statistics", "distributions", "correlations", "outliers"],});
console.log("Data Profile:");console.log("Column Statistics:", profile.statistics);console.log("Value Distributions:", profile.distributions);console.log("Column Correlations:", profile.correlations);console.log("Outlier Detection:", profile.outliers);Transformation Pipelines
Section titled “Transformation Pipelines”Creating Pipelines
Section titled “Creating Pipelines”Chain multiple transformations together:
// Create a transformation pipelineconst pipeline = client.createPipeline([ { name: "clean_data", operation: "clean", options: { removeDuplicates: true, handleMissingValues: "fill", }, }, { name: "standardize_text", operation: "standardize", options: { columns: ["name", "email"], case: "lowercase", }, }, { name: "validate_data", operation: "validate", options: { schema: userSchema, }, }, { name: "transform_types", operation: "convert_types", options: { conversions: [ { column: "age", type: "integer" }, { column: "salary", type: "decimal" }, ], }, },]);
// Execute the pipelineconst transformedData = await pipeline.execute(data);Saving and Reusing Pipelines
Section titled “Saving and Reusing Pipelines”// Save pipeline for reuseawait pipeline.save("user_data_cleaning");
// Load and use saved pipelineconst savedPipeline = await client.loadPipeline("user_data_cleaning");const result = await savedPipeline.execute(newData);Best Practices
Section titled “Best Practices”Data Preparation
Section titled “Data Preparation”- Understand your data before transformation
- Document your transformations for reproducibility
- Test transformations on sample data first
- Validate results after each transformation step
Performance Optimization
Section titled “Performance Optimization”- Use appropriate data types for better performance
- Batch transformations when possible
- Cache intermediate results for repeated operations
- Monitor memory usage for large datasets
Quality Assurance
Section titled “Quality Assurance”- Implement comprehensive validation rules
- Handle edge cases and unexpected data
- Maintain data lineage for audit purposes
- Regular quality checks on transformed data
Troubleshooting
Section titled “Troubleshooting”Common Issues
Section titled “Common Issues”Memory Issues:
- Use streaming for large datasets
- Process data in chunks
- Optimize data types
Performance Issues:
- Use efficient transformation operations
- Enable caching where appropriate
- Consider parallel processing
Data Quality Issues:
- Implement validation rules
- Handle missing values appropriately
- Check for data type consistency
Getting Help
Section titled “Getting Help”Next Steps
Section titled “Next Steps”After mastering data transformation:
- Explore advanced analytics features
- Set up automated pipelines for recurring transformations
- Integrate with external systems using APIs
- Implement data governance practices
For more advanced topics, check out: