Installation
UnDatasIO Python SDK Documentation
Section titled “UnDatasIO Python SDK Documentation”💫Welcome to the UnDatasIO Python SDK
Section titled “💫Welcome to the UnDatasIO Python SDK”Official Website: https://undatas.io/
UnDatasIO provides powerful, cloud-based file parsing capabilities. This Python SDK offers a streamlined, developer-friendly interface for interacting with the UnDatasIO API. It allows you to programmatically manage workspaces, tasks, and files, enabling you to focus on data analysis and application development.
Key Features
Section titled “Key Features”- Workspace & Task Management: Easily list and navigate through your workspaces and tasks.
- Comprehensive File Handling: Upload new files to specific tasks and list existing ones.
- Asynchronous Parsing: Trigger parsing jobs for one or multiple files with configurable parameters.
- Flexible Result Retrieval: Fetch structured parsing results as text or request a downloadable ZIP archive containing all artifacts.
- Pythonic Design: Methods return data directly (e.g., a list of dictionaries) on success and None on failure, with detailed errors logged for easy debugging.
Installation
Section titled “Installation”🤖You can easily install the UnDatasIO Python SDK using pip:
pip install undatasioQuick Start
Section titled “Quick Start”🥇 The new workflow follows a logical hierarchy: Workspace -> Task -> File. Here’s a complete example demonstrating the entire process:
import timefrom undatasio import UnDatasIOimport pandas as pd
# 1. Initialize the UnDatasIO client with your token and the API base URLclient = UnDatasIO( token='your_api_key_here')
# 2. List available workspaces and select the first oneworkspaces = client.workspace_list()if not workspaces: exit("No workspaces found.")first_workspace_id = workspaces[0]['work_id']print(f"Using workspace: {first_workspace_id}")
# 3. List tasks within the selected workspace and select the first onetasks = client.task_list(work_id=first_workspace_id)if not tasks: exit(f"No tasks found in workspace {first_workspace_id}.")first_task_id = tasks[0]['task_id']print(f"Using task: {first_task_id}")
# 4. Upload a new file to this task# Make sure 'path/to/your/document.pdf' existsif client.upload_file(task_id=first_task_id, file_path='path/to/your/document.pdf'): print("File uploaded successfully!")
# 5. List all files in the task to get a file_idfiles = client.get_task_files(task_id=first_task_id)if not files: exit("No files found in the task.")file_to_process = files[0]file_id = file_to_process['file_id']print(f"Processing file: {file_to_process['file_name']} (ID: {file_id})")
# 6. Trigger the parsing process for the fileif client.parse_files(task_id=first_task_id, file_ids=[file_id]): print("Parsing task successfully triggered. Waiting for completion...") # In a real application, you might poll for status. Here, we just wait. while True: time.sleep(10) get_task_files = pd.DataFrame(client.get_task_files(task_id=task_id)) if len(get_task_files): print(get_task_files) status = get_task_files[get_task_files['file_id'] == file_id].status.values[0] if status == 'parser success': break
# 7. Get the parsed text result result_text = client.get_parse_result(task_id=first_task_id, file_id=file_id) if result_text: print("\n--- Parsed Result (Text) ---") print("\n".join(result_text)[:500] + "...") # Print first 500 characters
# 8. Get the download URL for the result archive download_url = client.download_parsed_results(task_id=first_task_id, file_ids=[file_id]) if download_url: print("\n--- Download URL ---") print(download_url)API Reference
Section titled “API Reference”🔥 The UnDatasIO Python SDK provides the following methods:
-
UnDatasIO(token: str)- 🛠️ Initializes the client.
token (str): Your API key, obtained from the UnDatasIO platform.
- 🛠️ Initializes the client.
-
workspace_list(self) -> Optional[List[Dict]]- 🏢 Retrieves a list of all workspaces accessible by your API key.
file_dir_path (str): The path to the directory containing the files to upload.- Returns: A list of dictionaries, where each dictionary represents a workspace, or
Noneon failure.
- 🏢 Retrieves a list of all workspaces accessible by your API key.
-
task_list(self, work_id: str) -> Optional[List[Dict]]- 📋 Retrieves a list of all tasks within a specific workspace.
task_id (str): The ID of the target task.- Returns: A list of dictionaries representing tasks, or
Noneon failure.
- 📋 Retrieves a list of all tasks within a specific workspace.
-
get_task_files(self, task_id: str) -> Optional[List[Dict]]- 📂 Retrieves a list of all files within a specific task.
task_id (str): The ID of the target task.- Returns: A list of dictionaries representing files, or
Noneon failure.
- 📂 Retrieves a list of all files within a specific task.
-
upload_file(self, task_id: str, file_path: str) -> bool- 📤 Uploads a single file to a specific task.
task_id (str): The ID of the task to upload the file to.file_path (str): The local path to the file to be uploaded.- Returns:
Trueon successful upload,Falseon failure.
- 📤 Uploads a single file to a specific task.
-
parse_files(self, task_id: str, file_ids: List[str], **kwargs) -> bool- 🌟 Triggers a parsing job for one or more files.
task_id (str): The local path to the file to be uploaded.file_ids (List[str]): The local path to the file to be uploaded.- Optional keyword arguments like
lang='ch'orparse_mode='fast'can be passed. - Returns:
Trueif the parsing job was successfully triggered,Falseotherwise.
- 🌟 Triggers a parsing job for one or more files.
Click to see all supported Mode codes
| Mode |
|---|
fast |
accurate |
multi-modal |
Click to see all supported lang codes
| Code | Language |
|---|---|
en | English |
korean | 한국어 |
japan | 日本語 |
ch | 中文 |
chinese_cht | 繁體中文 |
de | Deutsch |
es | Español |
id | Bahasa Indonesia |
fr | Français |
pt | Português |
it | Italiano |
tr | Türkçe |
pl | Polski |
cs | Čeština |
da | Dansk |
hi | हिंदी |
ta | தமிழ் |
te | తెలుగు |
ka | ಕನ್ನಡ |
af | Afrikaans |
az | Azərbaycan |
bs | Bosanski |
cy | Cymraeg |
et | Eesti |
ga | Gaeilge |
hr | Hrvatski |
hu | Magyar |
is | Íslenska |
ku | Kurdî |
la | Latina |
lt | Lietuvių |
lv | Latviešu |
mi | Māori |
ms | Bahasa Melayu |
mt | Malti |
nl | Nederlands |
no | Norsk |
oc | Occitan |
pi | पालि |
ro | Română |
rs_latin | Srpski |
sk | Slovenčina |
sl | Slovenščina |
sq | Shqip |
sv | Svenska |
sw | Kiswahili |
tl | Tagalog |
uz | O’zbek |
vi | Tiếng Việt |
-
get_parse_result(self, task_id: str, file_id: str) -> Optional[List[str]]- 📄 Fetches the parsed text result of a single file.
task_id (str): The ID of the task.file_id (str): The ID of the file.- Returns: A list of strings, where each string is a block of parsed text, or None on failure.
- 📄 Fetches the parsed text result of a single file.
-
download_parsed_results(self, task_id: str, file_ids: List[str]) -> Optional[str]- 🔗 Requests a download URL for a ZIP archive containing the full parsing results.
task_id (str): The ID of the task.file_ids (List[str]): A list of file IDs to include in the archive.- Returns: A string containing the download URL, or None on failure.
- 🔗 Requests a download URL for a ZIP archive containing the full parsing results.
Colab Example
Section titled “Colab Example”📄 The following ipynb file is designed to run in a Colab environment. Clicking on it will allow you to run it directly in Colab.
Error Handling
Section titled “Error Handling”📚 This SDK is designed for simplicity. All methods that fetch data will return the data directly on success or None on failure. Methods that perform an action will return True on success or False on failure.
Check for ``None`` or ``False``.:Always check the return value of a method call to handle potential failures gracefully.Check the LogsIn case of failure, the SDK will log detailed error information to the console using Python’s standard logging module. This is your primary tool for debugging.
Contact Us
Section titled “Contact Us”If you have any questions or need support, please visit our official website or contact us through our support channels.
